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Abstract--The subjectivity of ellipse fitting in many strain techniques has hindered the determination of fabric 
anisotropy and tectonic strain. However, many sets of x, y co-ordinates can be approximated as an ellipse using a 
least-squares algorithm to calculate a best-fit ellipse and associated average radial error. For instance, the two 
dimensional shape of many objects can be approximated as an ellipse by entering digitized co-ordinates of the 
object margin into the ellipse algorithm. 

The rim of maximum point density in a normalized Fry diagram is defined by normalized center-to-center 
distances between touching or nearly touching objects. The enhanced normalized Fry (ENFry) method 
automates ellipse fitting by entering center-to-center distances between these 'touching' objects into the least- 
squares ellipse algorithm. For homogeneously deformed populations of 200 objects, the ENFry method gives an 
accurate and precise measure of whole-rock fabric anisotropy, particularly for low ellipticities. When matrix 
strain exceeds clast strain, manual ellipse fitting of normalized Fry plots gives more accurate matrix anisotropies, 

The mean object ellipse (MOE) method calculates the best-fit ellipse from the geometry of the objects. Three 
points from the margin of each object ellipse, centered at the origin and expanded or reduced to unit volume, are 
used to calculate the best-fit fabric ellipse. The MOE method is very precise for small data sets, making it a good 
method for mapping heterogeneous object strain. However, least-squares calculations maximize the influence of 
distal and spurious ellipticities, causing the MOE method to overestimate the fabric ellipticity of most aggregates. 

INTRODUCTION through an aggregate with perfect three-dimensional 
anticlustering (e.g. packed, equi-volume spheres) con- 

QUANTITATIVE analysis of rock fabric can provide im- tains variably sized cross-sections through both the mid- 
portant constraints on many petrogenetic problems, die and ends of the objects (Bhattacharyya & Longiaru 
Structural geologists have traditionally used fabric 1986, Erslev 1988). This effect, when combined with 
anisotropy to quantify deformation histories of tecto- normal sorting, limits anticlustering and obscures the 
niteR (e.g. Cloos 1947, Ramsay 1967, Schmid et al. fabric ellipse. 
1987). Whilst these strain methods are not inherently In packed aggregates, plotting the normalized dis- 
limited to the measurement of deformation, quantit- tances between object centers (actual distance divided 
ative evaluation of subtle fabric anisotropy formed by by the sum of the average radii of the two objects) in the 
mild deformation, compaction and depositional align- normalized Fry diagram (Fig. lb) (Erslev 1988) provides 
ment is hindered by the coarse resolution and subjec- a clearer definition of the fabric ellipse by reducing the 
tivity of many strain methods, number of points inside the rim of maximum point 

In addition, the lack of automated ellipse calculation density. In packed objects, the rim of maximum point 
and quant i ta t iveerrordeterminat ionpreventstheestab-  density is defined by touching (or nearly touching) 
lishment of accuracy and precision standards. For in- objects irrespective of their two-dimensional size. Since 
stance, evaluation of object strain by plotting object the normalized Fry method is not dependent on two- 
ellipticity against long axis inclination (Rf /~ technique: dimensional anticlustering, it should be independent of 
Ramsay 1967, Lisle 1985) typically involves determining sorting, which can further decrease the anticlustering of 
the top and bottom of an onion-like shape encompassing packed aggregates. 
most of the data in an Rf/q~ diagram. The selection of However, the normalized Fry method still requires 
objects to include and objects to exclude can be very manual ellipse fitting, introducing a subjective, irrepro- 
arbitrary, ducible step to the analysis. We have found that students 

Measuring center-to-center strain from scatter plots in structural geology classes are often difficult to con- 
of center-to-center distances is usually even more sub- vince that the 'answer' ellipse is significantly better than 
jective. Determining the level of maximum point density theirs. In complex natural aggregates, variable initial 
in the Ramsay (1967) technique, where inclinations of and tectonic ellipticities broaden the rim of maximum 
center-to-center distances are plotted against the actual point density, making ellipse fitting even more difficult. 
distances, is matched in difficulty with determining the The fabric methods proposed by this paper allow 
rim of maximum point density in a Fry (1979) plot (Fig. analytical, unbiased determination of individual object 
la).  Both methods require an unrealistic degree of two- and overall fabric anisotropy. The analyses are imple- 
dimensional anticlustering, which is inherently limited mented using a least-squares ellipse-fitting algorithm in 
in packed aggregates. Even a two-dimensional plane specially modified versions of INSTRAIN 2.5, an inte- 
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( a )  ( b )  
Fry (1979) Method Normalized Fry Method 
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( c )  ( d )  
Enhanced Fry Enhanced Normalized Fry 
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162 pairs of nearest-neighbor objects (selection factor - 1.07) 

LEAST SQUARES BEST-FIT ELLIPSES 

Conventional Fry method: X/Y - 1.484 Phi - 45.17 
Average error: 20 .61% 

Normalized Fry method: X / Y .  1.567 Phi - 47•77 
Average error: 7.86 % 

Fig• I. (a) Fry (1979) all--object--object separations, (b) normalized Fry (Erslcv 1988), (c) enhanced Fry (EFry)  and (d) 
enhanced normalized Fry (ENFry)  plots with least-squares best-fit ellipses and their associated errors for the aggregate from 

fig• 5.7 in Ramsay & Hubcr  (1983). 

grated fabric analysis program for IBM-PC compatible lished. Current  line strain (Panozzo 1984, Schmid et al. 

and Macintosh computers. This paper  will derive a least- 1987), mean ellipticity (Ramsay 1967) and mean ellipse 
squares algorithm for a best-fit ellipse centered at the (Shimamoto & Ikeda 1976) methods give unique values 
origin, propose new methods of fabric analysis using of ellipticity independent  of analyst bias but lack direct 
this algorithm and test the precision and accuracy of the error  calculations. 
methods• Another  approach is to minimize an error equation 

quantifying the deviation of the observations from a 
best-fit ellipse• The standard least-squares method was 

LEAST-SQUARES FABRIC ANALYSIS METHODS used in this analysis because the solution of the least- 
squares equations gives a unique,  unbiased result. The 

The classical approach to quantifying the two- least-squares derivation for an ellipse centered at the 
dimensional geometry of textural elements in a material origin is given in the Appendix• Some of the short- 
(e.g. grain dimension or aggregate geometry) is to comings of least-squares methods are illustrated and 
calculate a fabric ellipse measuring the deviation from discussed later in this paper. Other  options involving the 
an ideal initial state approximated by a circular geo- iterative minimization of error  equations are currently 
metry (Ramsay 1967)• This requires the graphical or being evaluated. 
mathematical estimation of a best-fit ellipse• Calculation In order  to measure the closeness of the data to the 
of a best-fit ellipse allows the reproducibility necessary if calculated best-fit ellipse, the average radial error  is 
standards of precision and accuracy are to be estab- calculated for each least-squares ellipse• In this pro- 
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cedure, the distance between the ellipse center (at the each co-ordinate. The translated co-ordinates are 
origin) and data point is compared with the predicted entered into the least-squares ellipse algorithm (Appen- 
distance between the ellipse center and the ellipse mar- dix) to define the best-fit ellipse. 
gin on the line including the data point. The predicted " One motivation for incorporating the least-squares 
distance is calculated by combining the ellipse equation ellipse algorithm in a digitizer program was to check the 
with the equation for the line from the center to the data algorithm for errors and rotational invariance, which 
point. The absolute value of the difference between was a problem with an earlier least-squares formulation. 
these distances is divided by the predicted distance, Tests, including digitizing ellipse templates, deforming 
yielding the error for a specific data point. The errors are points by synthetic simple shear and rotating points in a 
summed for all points and divided by the number of spreadsheet, gave the expected ellipticities, indicating 
points, giving the average radial error, no significant deviations or rotational variability (Ge 

The following methods of fabric analysis use least- 1990). The comparison of results from least-squares 
squares ellipse (Appendix)and error algorithms, imple- digitizing with earlier results from manual four-point 
mented in PASCAL subroutines, to calculate the size, and five-point digitizing shows increased consistency, 
ellipticity and inclination of the best-fit ellipse, suggesting improved accuracy. 

The number of points required for accurate esti- 
Least-squares object digitizing mation of the best-fit ellipse depends on the angularity 

of the object. Three objects, a slightly pear-shaped 
Accurate fabric analysis presumes the collection of ooid, a six-sided quartz polygon and a triangular 

accurate, reproducible object shape data. The definition quartz grain were digitized 20 times using different 
of elliptical objects using four points at the end-points of increments between data points (Fig. 2). These incre- 
the principal axes of an ellipse requires the manual ments gave between five and 44 points on the margin 
determination of an average or inscribed ellipse for each of the objects, with smaller increments giving larger 
object, adding subjectivity and time. Digitizing five numbers of points. For each increment and grain 
points on the margin of the object, with the computer shape, the standard deviation of 20 least-squares ellip- 
calculating the conic uniquely defined by the points, is ticities was calculated to evaluate the effect of different 
faster, particularly for elliptical aggregates like strained numbers of points on the determination of the best-fit 
ooids, but assumes that the selected five points are ellipse. For all three grain shapes, the standard devi- 
representative. The selection of representative pointsis ation of ellipticity increased dramatically for larger 
particularly problematical for objects with planar or increments, which gave fewer points per grain margin. 
cuspate grain boundaries. The difference in precision between the angular, tri- 

To increase the accuracy of individual object descrip- angular grain and the more equant grains reflects the 
tions, the least-squares algorithm (Appendix) was used greater deviations from an ideal ellipse at grain asperi- 
in a digitizing program which approximates object out- ties, which may not be represented in large increment 
lines as ellipses. The program collects points on the grain digitizing. This analysis suggests that the digitiz- 
margin of an object as it is traced in increment mode. ing increment should be set to allow 25 points per 
These points are translated toward the origin by sub- grain to allow accurate approximation of irregular 
tracting the centroid co-ordinates (average x, y) from grains as ellipses. 

0.3 
"l 

\ Precision of Least-Squares Object Digitizing 
k,.,~ 

~. 0.2 t. l 
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Fig. 2. The reproducibi l i ty of  least-squares ellipse definit ions based on different numbers of digit ized points on the margins 
of three grain shapes. 
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Enhanced Fry (EFry) and enhanced normalized Fry normalized Fry plot starts at a distance D, = 1,0, which 
(ENFry) methods is defined by touching circular cross-sections. For de- 

formed, elliptical objects, object radii are variable so the 
The Fry (1979) and normalized Fry (Erslev 1988) average radius for each object (R -- (X/2 * }'/2) lr2, where 

methods offer a graphical approach to center-to-center X and Y are the long and short axes of the ellipse) must 
fabric analysis (Figs. la & b). Fry (1979) plots are an be defined. The deformed case is simply related to the 
elegant way to analyze anisotropy in anticlustered popu- undeformed case by a stretch factor, which does not 
lations but the lack of sufficient two-dimensional anti- affect the validity of this argument (see equations 4 in 
clustering in most aggregates makes ellipse selection Erslev 1988). 
difficult. The increased point density contrast in normal- Thus, for packed aggregates, the rim of maximum 
ized Fry diagrams (Erslev 1988) facilitates the selection point density in a normalized Fry diagram is defined by 
of a fabric ellipse. However, manual ellipse fitting to the objects in or nearly in contact with each other. These 
rim of a maximum point density is still required, pairs of 'touching' objects can be manually selected by 

Ideally, we would like to eliminate, in an unbiased entering pairs of approximate center locations. How- 
way, all points except those contributing to the rim of ever, this adds a subjective step which might bias the 
maximum point density. The problem with quantifying analysis. Alternatively, touching pairs can be computer 
the Fry technique is the lack of logical, non-subjective selected by comparing the center-to-center distance (D) 
criteria to eliminate distances which do not contribute to between each pair of objects with the sum of object radii 
the rim of maximum point density. Restricting the size for each pair (ra + rb) measured parallel to D. These 
range of object cross-sections used to define centers does radii are elliptical radii measured on the line between the 
clean out the central region of standard Fry plots, but two centers in question, not average radii used to norma- 
this also reduces the number of nearest neighbors for a lize the distances. Dividing the center-to-center distance 
given data set. In an attempt to clarify the rim of by the sum of these elliptical radii ( D / ( r  a + rb) ) gives an 
maximum point density, Crespi (1986) eliminated dis- object-pair selection factor (or selection factor for short) 
tances below a minimum center-to-center distance, but which allows an adjustable criterion for selecting object 
this makes the inner void more circular. In addition, no pairs. For example, a selection factor of 1.0 will only 
unbiased criteria exist for removing center-to-center accept pairs whose D/(ra + rb) -< 1.0. These pairs include 
distances which plot outside the rim of maximum point elliptical objects in contact with each other and objects 
density, whose defining ellipses overlap. This is common in 

For homogeneously deformed, packed aggregates, polygonal aggregates with interpenetrating grain boun- 
the rim of maximum point density in normalized Fry daries. 
plots consists of distances between touching or nearly The normalized center-to-center distances between 
touching neighbors. The following, synthetic example of 'touching' pairs, as defined by the object pair selection 
a two-dimensional, undeformed aggregate of circular factor or by manual identification of nearest-neighbors, 
objects illustrates this relationship. The normalized dis- can be plotted in an enhanced normalized Fry (or 
tance (Dn) between objects a and b equals the actual ENFry) plot (Fig. ld). The true center-to-center dis- 
center-to-center distance D divided by the sum of their tances can also be plotted in an enhanced Fry (or EFry) 
radii. Since these objects cannot overlap and each object plot (Fig. lc). However, the rim of maximum point 
has perfectly circular cross-sections, the minimum Dn density in a Fry plot is not uniquely defined by touching 
(1.0) is defined by touching pairs of objects. For this objects so this diagram must be interpreted carefully. 
undeformed case, the rim of maximum point density in a The selected center-to-center and normalized center-to- 

(a) (b) (c) 

Fig. 3. Tracings of representative portions from thin sections with at least 1500 objects used for tests of precision and 
method variables. These samples come from (a) oolitic Ing|esid¢ Formation of Permian age from northwest of Fort Collins, 
Colorado, (b) Cambrian Flathead Sandstone from the northern Teton Range and (c) upper amphibolite facies quartzite of 

Archean age from the southwestern Beartooth Mountains. 
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center distances from 'touching' objects can now be Sorting 
entered into the least-squares ellipse algorithm which 3s 
provides an unbiased estimation of ellipticity, long axis EFry _ . . . . . . . - -  
inclination and average radial error for both the EFry 3o ~ ~ \ / 
and ENFry methods. 2s 2 " -  

In order to determine the range of optimum selection ~- =" ~ / ~ ~_ 
factors, data sets of 1500 objects from minimally de- °S ~ ~ ~ ~ 
formed samples (Fig. 3) were digitized using the least- ~ , . ~  ~, ~ ~ 
squares program and the smallest digitizing increment, " 10 
ensuring at least 25 points per object. These aggregates ENFn/ ~ ~ 

were selected to represent the spectrum of packed 5 
aggregates, ranging from well-rounded, undeformed 0 

0.2 0.4 0.8 o.s 
oolites to polygonal quartz in an upper amphibolite Standard t~,iationofPhl 
facies quartzite. The samples show no obvious fabric 
heterogeneity in thin section. Data files were checked Fig. 5. Sorting, as measured on the analyzed plane by the standard 

deviation of ¢ ( Folk 1974), plotted vs average radial error given by the 
for anomalous data using Rf/¢ plots. Objects with ellip- enhanced Fry (EFry) and enhanced normalized Fry methods (ENFry). 
ticities greater than 1 above the next largest ellipticity 
were eliminated from the data sets. 

The number of 'touching' pairs selected is a function the number of touching pairs visually and adjust the 
of the selection factor and the aggregate type (Fig. 4). selection factor to give that number of pairs. 
Increasing the selection factor increases the number of One advantage of normalized Fry techniques over Fry 
'touching' pairs chosen for the calculation of the best-fit techniques is that they appear to be independent of 
ellipse and average radial error. Elliptical objects like sorting. This hypothesis was tested using the aggregates 
the ooids in Fig. 3(a) require higher selection factors of spheres from Erslev (1988) and three aggregates of 
than the polygonal quartz grains in Fig. 3(c) to get variably-sized lead shot. Sorting wascalculatedusingthe 
equivalent numbers of 'touching' pairs because ooids standard deviation of the object ¢ derived from object 
have less object interpenetration and resulting overlap areas on the two-dimensional surface (Folk 1974, Ge 
of elliptical object approximations. In many cases, each 1990). Figure 5 shows that the average radial error of the 
aggregate must be evaluated separately for the optimum enhanced Fry method increases dramatically with de- 
selection factor, creased sorting. The average radial error of the 

For ooids, the average radial error from the enhanced enhanced normalized Fry method remains roughly the 
normalized Fry method is highly variable at selection same regardless of sorting, with the aggregates of 
factors less than 1.0, stays levelbetween 1.0and 1.1 and slightly elliptical lead shot giving higher errors than 
then increases (Fig. 4a). The scatter at low selection aggregates of spheres. This experiment confirms that 
factors is the result of the small number of object pairs normalized Fry techniques are independent of sorting. 
selected. Increasing errors at selection factors above 1.1 
result from decreased point density beyond the rim of Mean object ellipse (MOE) method 
maximum point density in a normalized Fry plot, result- 
inginalargerspreadofx,  yco-ordinates. The same basic The calculation of mean ellipticities is one of the 
patterns occur in the sandstone and polygonal quartz oldest techniques for quantifying strain. Ramsay (1967), 
aggregates, but at lower selection factors because of Dunnet (1969) and Lisle (1977) have shown the utilityof 
more object interpenetration (Figs. 4b & c). arithmetic, geometric and harmonic mean ellipticities 

Another approach to choosing the optimal selection despite their tendency to overestimate the ellipticity, 
factor is to determine how many touching pairs should particularly for minimal fabric anisotropies. 
be expected for the objects if they originated as a close- The reason for this error is illustrated in Figs. 6(a) & 
packed aggregate. Synthetic aggregates of equi-volume (b). If an aggregate of undeformed objects has equival- 
spheres in Erslev (1988) had 0.60 touching pairs per entyet randomly orientedinitialellipticity, mean ellipti- 
object. Packed spheres in Chilingarian & Wolf (1975) cities will be closer to the initial ellipticity (1.5) than the 
had 0.63 touching pairs per grain. Samples of lead shot tectonic ellipticity (1.0). Because mean ellipticities ig- 
with variable sorting had 0.63, 0.57 and 0.55 touching nore the effect of long axis orientation (¢), they do not 
pairs per object. Thus, for an aggregate of originally fully characterize the geometry of the fabric anisotropy. 
close-packed objects, approximately0.6 touching pairs An alternative method, the mean object ellipse 
per object should be selected by varying the selection (MOE) method, is illustrated in Fig. 6(c). MOE calcu- 
factor. In general, concave-inward objects like ooids or lares the least-squares best-fit ellipse from the shape of 
poorly cemented sand grains require selection factors objects, which are input as ellipses, by combining their 
between 1.0 and 1.1 whereas polygonal aggregates re- shapes into a single, average ellipse. First, the center of 
quire selection factors between 0.9 and 1.0. the ellipse approximating each object is translated to the 

Non-close packed aggregates with abundant matrix origin. In order to remove size effects, the object area is 
material will yield fewer 'touching' pairs for a given normalized to a constant value, effectively expanding or 
selection factor. In this case, the analyst should estimate shrinking the object without distorting its shape. Since a 
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(a) Given randomly oriented ellipses ( b ]  Mean Ell ipticit ies (X/Y) 
with Rt = 1.5. R s = 1.0 

Ar i thmet ic Mean = 1.5 

Bath means = RI,  not  R s 

( c )  Mean Object Ellipse 

Step 1: Center each object  at  Step 2: Calculate l eas t -squares  
0,0 and normalize to equal area b e s t - f i t  conic ( A x 2 + B x y + C y 2 = l )  

from 3 points per object  

X / Y  = 1.0 = R s 

Fig. 6. Graphical illustration of the difference between (b) mean ellipticity and (c) mean object ellipse calculations. For 
clarity, the diagram in Step 2 of (c) plots three points per object plus their symmetric equivalents, giving a total of six points 

per object. 

centered ellipse is uniquely characterized by three points the three points back to their original position. The three 
on its margin, the program (1) rotates the principal non-centrosymmetric points for each object are input 
ellipse axis parallel to the x co-ordinate axis, (2) calcu- into the least-squares and error procedures to determine 
lates the end-points of the maximum and minimum the mean object ellipse. These routines output the best- 
ellipse axes and an intermediate point on the ellipse at x fit ellipticity, long axis angle (~) and associated average 
equal to one half the maximum stretch, and (3) rotates radial error for the entire aggregate. This method is 

similar to the mean ellipse calculations of Shimamoto & 
Strain Versus Distance Ikeda (1976) who calculated the ellipse equation for 

6 
o = = = ( a )  Object Elliptieity each object and then averaged the coefficients. 

s The MO E method is ideally suited for the creation of 
° smoothed strain maps by calculating the mean object 

4 ellipse for the nearest neighbors of each object. Figure 7 
Oo ° shows two ellipticity profiles through a quartzite cut by 

* O O O O O  "~ 3 o = g~o ° 0° 0 . °  . ° o • . ° three cleavage zones (Powell 1982). Both individual 
z" ~ o° a o o, d , ,gs ° . .~ ° ~ o object ellipticity (Fig. 7a) and MOE (calculated for the 
O 2 o= on ~ ~ ~0  o oO s a =_~0¢~ a % 0_~.*~=~-o ~ ~ , _ ~ .  ~ =_= = =e = = nearest five objects and plotted in Fig. 7b) show higher 

1 e~ ~, ° ==~'~'#00 as* .~d~=¢~= "=~0 0~ r ~ ellipticities in the three cleavage zones. The variability 
of the raw ellipticity values is smoothed out by the 

0 . . . . . . . . . . . . . . .  averaging effect of the MO E ellipticity. 
0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 

6 

( b ) Mean Object Ellipse (n-S) PRECISION AND ACCURACY OF E F R Y ,  E N F R Y  
s AND M O E  M E T H O D S  

_ ~. 4 The precision (reproducibility) of the new fabric tech- 
"' niques was tested on natural aggregates using four data 1~ 3 °%o = % 
~" * = =° *** sets of 1500 objects from the minimally deformed 
J ~ l _  * .= - *=~ ~ ~*= * = samples illustrated in Fig. 3. The selection factor was 

° • O ~ . ~  ~--'s.~*~*~ 0~, o~-~g  ° =~Jl,,= ~ 0 ~ 8 . ~ . , , ~ _ _  _ chosen to allow approximately 0.6 'touching' pairs per 
1 ° ° ° * * ~ * ~ =  ~ * ~ f ° ~  °*'~ ~ object. The digitized object data were entered into a 

modified version of INSTRAIN which outputs fabric 
0 data to a disk file for non-overlapping subsets of objects. 0 . e '  ~ ' 1 ' . , '  ~ ' .e a ' .a '  a ' .e '  ~ ~'. , '  ~.~ 

The number of objects per subset was incremented by 25 
Distance Perpendicular to Cleavage (ram) from 25 to 600, the maximum allowed by the program. 

Fig. 7. Evaluation of the heterogeneous strain in spaced cleavage Figures 8 and 9 show the variations of average radial 
cutting a quartz arenite in Powell (1982). Distance is measured from 
the bottom of the photomicrograph in Powell (1982), with cleavage e r r o r ,  long axis inclination and ellipticity for the EFry, 

zones at 1.2, 2.1 and3.2 ram. MO E and ENFry methods with different data subset 
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Enhanced Fry Ellipse: Oolite Enhanced Normalized Fry Ellipse: Oolite Mean Object Ellipse: Oolite 
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Fig. 8. Scatter plots of average radial error, long axis inclination and cl l ipt ic i ty for EFry, ENFry  and M O E  ellipse 
dctcrrninations using non-overlapping subsets of the ool i t ic aggregate il lustrated in Fig. 3(a). 
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Fig. 9. Scatter plots of average radial error, long axis inclination and cl] ipt ici ty for EFry, ENFry  and M O E  ellipse 
determinations using non.overlapping subsets of the polygonal quartz aggregate il lustrated in Fig. 3(¢). 
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sizes for an oolite and a quartz polygon subset. The other the MOE least-squares algorithm whereas each object 
two subsets (another oolite and the quartz arenite in Fig. only contributes 0.6 points to the ENFry least-squares 
3b) are analysed in Ge (1990) and summarized in Fig. 10. algorithm. 
For all the methods, the range of values narrows con- Figure 10 summarizes these precision measurements 
siderably for subsets of 200 objects, giving a good esti- by plotting the standard deviation of the ellipticity vs the 
mate of the minimum number of objects needed for number of objects in the data set. MOE and ENFry 
reasonable precision. The EFry method, which is depen- methods are approximately twice as precise as the EFry 
denton the two-dimensional anticlustering of the aggre- method, which is clearly not the best choice for the 
gate, gives larger errors and results in more variable analysis of packed aggregates. For large (>200 object) 
eUipticity and ¢ values. The MOE method is more aggregates, MOE and ENFry give similar levels of 
precise than the ENFry method for smaller numbers of precision, with all data sets giving standard deviations of 
objects because each object contributes three points to ellipticity <0.1. For these methods, the oolitic lime- 

stones gave the lowest standard deviations of ellipticity, 
averaging <0.05 for aggregates with more than 200 

( a ) objects. 
0.4 Precision of Enhanced Fry Method The accuracy of fabric techniques is difficult to quan- 

~ tify from natural samples since we lack independent 
.', methods of determining the true fabric anisotropy. An 

"6 0.3 ~x Quartz Polygon= j ~\ , , ,  ~ . alternate approach is to create an ideal, undeformed 
\ \  , , "  ", ~ aggregate with a given range of initial ellipticity and then 

0.a ~ ,.~ .._ " - - - ' \  . . . . . . . . . .  " , deform the aggregate by applying a stretching factor. 
i " ~  "x~_._~'-'-~-'-'--~ Sand=tor~ ", Figure 11 shows two synthetic aggregates created using 

~ ~  " ~ . _ . < . ~ ~ - ' -  /" ' .  ', an ellipse template. These aggregates were copied by 
0.1 "~"-..,., 

~ . ~ ~ . ~ ~ ' _  five rotations at 30 ° increments to increase the total 
number of objects and to assure random initial ellipse 

0 . . . . . . . . . . . . .  orientation. The samples were defined by five points on 
20 60 100 140 180 220 260 300 

Number of Object8 the margin of the ellipses, allowing incremental defor- 
mation of the objects by multiplying a stretch to the x co- 

( b ) 0.2 ordinate of each point. Since the samples are not realisti- 

Precision of Enhanced Normalized Fry Method caily anticlustered in two dimensions, the accuracy of 
the EFry method, which is dependent on the degree of 

i 
o.ls • anticlustering, cannot be evaluated. 

~ The ratios of the strain values given by MOE, arith- 
Ou~uPo~gon= metic mean ellipticity, harmonic mean ellipticity and 

0 . 1  " , . ~ - _ - - ' - -  I ' - ,  ~ s~a=to~ ENFry methods to the synthetic deformation are plotted 
• " ~ , .  _._.,.- . . . . .  ~ versus the synthetic deformation in Fig. 12 and summar- 

" " , , . - ~ ' ,  ,. ized in Table 1. The harmonic and arithmetic mean 0.05 . . . .  .,., ,..~'_. 
• " . . . . . .  " ellipticities overestimate the strain, particularly at low 

synthetic strains where most of the object ellipticity is 
o contributed by initial eilipticity. The MOE method cor- 

20 ' ~ ' 16o ' 1~o - 18o ' 22o ' ~o ' 30o rectly calculates the undeformed case yet overestimates 
Num~ofO¢~== the deformed case. This appears to be the result of the 

( c )  0.2 asymmetry of R e values relative to the tectonic ellip- 
ticity. Since the tectonic eilipticity is closer to the mini- 

Precision of Mean Object Ellipse Method mum ellipticity than the maximum ellipticity, the strain 
0.1s is overestimated. The same effect causes some of the 

.~ , overestimation of strain by the arithmetic mean. 
I ,,. ~ Quartz Polygon= 

0.1 ~'~ " ' ~  ~ - ~ . , ,  " ~ .  ~,~ ~Nlu'tdltone ( i )  Synthetic Acjgreejate 1 (b) Synthetic Aggregote 2 

O.Ofl "" " . . . . . .  

0 . . . . . . . . . . . .  , 

20 60 100 140 180 220 260 300 
Number of ObJectl 

Fig. 10. Summary of the tests of precision (reproducibility) in Figs. 8 
and 9, and Ge (1990). The standard deviation of each measure of 
ellipticity for subsets  of  25-300 objects is plotted vs the number  of  Fig. 11. Synthetic aggregates used to test the accuracy of the fabric 

objects in the data subset, methods.  
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a) gram was modified so that the x-component of the 
1.r center-to-center distance increased more than the actual Synthetic 1 
1.6 deformation of initially circular objects. The resulting 

Mean Initial EIIipticity = 1,3 Fry and normalized Fry plots gave correct results for 
1.5 

~ matrix deformation whereas MOE and mean ellipticities 
c 1.4 gave correct results for object deformation. However, 

1.a the EFry and ENFry methods, implemented with auto- ~Mean Object Ellipse 
1.2 N , /  matic selection of touching pairs, gave least-squares 
1,1 ~ ~  Harmonic Mean ellipses intermediate between the object and matrix 

~I strains. 
1 - -  An analogous difference between matrix and object 

Enhanced Normalized Fry J 
o.9 . . . . . . . . . . . . . . . . . . .  strains occurs in the ironstone oolites from fig. 7.7 of 

1.2 1.4 1.s 1.a 2 2.2 2.4 2.e 2.a Ramsay & Huber (1983). Figure 13 shows two pairs of 
. .  Synthetic Deformation (Rs) EFry and ENFry plots for this aggregate with different 

b)  object-pair selection factors. The lower selection factor 
1.7 
1,6 ~ Synthetic 2 preferentially picks object pairs aligned parallel the the 

Mean Initial Ellipticity = 1.7 Y axis of the strain ellipse. Object pairs parallel to the X 
=~ 1.s ~ axis are not as readily selected since the larger matrix 

\ \ A r i t h m e t i c  Mean deformation has pulled them apart so they no longer 1.4 
\ \  'touch' in the x direction. Thus, the EFry and ENFry 

Mean Object Ellipse 1"3 ~ /  MeanObje~l, ElllpSeu_" . . . _ _ _  least-squares ellipses calculated from object pairs 
monlc 

1.2 selected by the computer do not give accurate esti- 
mations of the true matrix strain. If a sample population 

~= 1.1 shows the radially biased selection of pairs seen in Fig. 
1 Enhanced Norrnalizedgry J 13(a), a better estimate of matrix strain is given by 

0.9 . . . . . . . . . . . . . . . . . . .  manually fitting an ellipse to a normalized Fry plot. 
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 The effect of spurious data on the strain methods is 

Synthetic Deformation (Rs) 
illustrated in Table 2 using a data set from fig. 5.7 of 

Fig. 12. The ra t ioof the  measured ellipticity over the actual, synthetic Ramsay & Huber (1983). It was acquired using an older 
deformation (R,) plotted vs the synthetic deformation of the x dimen- version of the least-squares digitizing program which 

sions. A perfect fabric method should always give a ratio of 1.0. 
lacked comprehensive error checking. As a result, two 
spurious objects were defined with ellipticities of 38 and 

The ENFry method gives a close approximation of the 11. Each spurious object contributed one additional 
actual strain in both cases. Of all the automated tech- center-to-center distance between 'touching' objects. 
niques, only the ENFry method gives errors which do MOE is particularly affected indicating that any spuri- 
not vary systematically with deformation. A simple ous data will overwhelm the technique. The arithmetic 
manual implementation of the Re/~ method gives accu- mean ellipse is also strongly affected. The harmonic 
rate results for synthetic 1 but shows large errors for the mean ellipticity and enhanced normalized Fry method 
more variable synthetic 2. This error (note the large show the least distortion. Since the harmonic mean sums 
standard deviations)reflects observer errors (E.A.E.) the inverse ellipticities, the effect of large values is 
in the determination of Rfmax and Rfmin .  automatically minimized. The enhanced normalized Fry 

This accuracy test assumes homogeneous defer- method requires two 'touching' objects with aligned 
mation with identical object and matrix strain. Ideally, spurious ellipticities to create an equally anomalous 
we would like to evaluate these strains separately. To center-to-center distance. Thus, the effect of one spuri- 
test the effects of heterogeneous deformation, the pro- ous object is mitigated by the surrounding objects. 

Table I. Summary of accuracy tests 

Synthetic 1 (382 objects)* Synthetic 2 (408 objects)-t 

Average Total Average Total 
measured/strain error:~ measured/strain error¢ 

Method (-+1 SD) (%) (_1 SD) (%) 

Enhanced normalized Fry 0.9949 __. 0.0028 0.79 1.0015 __. 0.0025 0.40 
Mean object ellipse 1.0475 _ 0.0269 7.44 1.1194 _ 0.0364 15.6 
Harmonic mean 1.0525 __. 0.0840 13.6 1.1386 + 0.1478 28.6 
Arithmetic mean 1.0885 -4" 0.0739 16.2 1.2636 --- 0.1293 39.3 

Rfl¢p§ 1.0059 __. 0.0141 2.00 1.2018 _ 0.1380 34.0 

* 14 measurements at 0.15 R, increments from 1.0 to 2.95 (Fig. 1 l a). 
"t21 measurements at 0.10 Re increments from 1.0 to 3.0 (Fig. l ib ) .  
eTotal error = 100 * (Absolute value (1 - average measured strain) + 1 SD). 
§From manually measured Rf m=~ and Rf ml. by E .A.E .  on nine (synthetic 1) and seven (synthetic 2) Rf/~p 

plots. 
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( a )  
Enhanced Fry Enhanced Normalized Fry 

. .  ' ;  j . 
° .  . ' . .  
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... 

48 pairs of nearest-neighbor objects (selection factor = 1.01) 

LEAST SQUARES BEST-FIT ELLIPSES 

Conventional Fry method: X / Y ,  1.643 Phi = -23.82 

Average error: 14.87 % 

Normalized Fry method: X/Y = 1.598 Phi = -23.93 

Average error: 5.35 % 

(b) 
Enhanced Fry Enhanced Normalized Fry 

• • "...~..., :. . 

• "  I . " "  : , . . : .  q .e . .  . • . ' ,  "• , ' "  " ~ ' L , '  : " .  " "  
. . . . , . . . .  C . • ~ ¢ , . . . . .  

• " .  • " . "  . .  " . . "  ~ ' ;  " t ' , , .  
r ' .  • " : ; .  

• + • . ".: .:,~. + .:," "~.," . . . .  

• • . . . . . *  t ';';" • . t  . 
. .  " . . . "  . . . : . .  • . .  :'.. • . : . ' . '  ..:. .. 

, . ; . , ,  , . :  . .  • • • : " ' . l  . . ; . ' r  

• j . • . , " .  t . .  " . .  "~-~.;',..:.:,: .... s 

141 pairs of nearest-neighbor objects (selection factor ,, 1.07) 

LF_AST SQUARES BEST-FIT ELLIPSES 

Conventional Fry method: X/Y = 1.672 Phi - -21.94 

Average error: 12.56 % 

Normalized Fry method: X/Y = 1.641 Phi ,, -22.87 

Average error: 5.79 % 

Fig. 13. Enhanced Fry (EFry) and enhanced normalized Fry (ENFry) plots of fig. 7.7 in Ramsay & Huber (1983) showing 
the effect of heterogeneous strain on the EFry and ENFry methods. Note the unequal radial distribution of points in ENFD' 

plots, particularly at low selection factors. 

Table 2. Effect of spurious data on quantitative fabric methods 

Files with spurious data 

Method 276 objects* 277 Objects* 278 Objects* 

Maximum ellipticity 3.11 11.00 38.36 
Rogue values none 11.00 38.36, 11.00 

Mean object ellipse 1.599 1.657 3.177 
Arithmetic mean ellipticity 1.634 1.667 1.799 
Harmonic mean ellipticity 1.568 1.573 1.578 
Enhanced normalized Fry';" 1.556 1.559 1.561 

*Digitized ironstone ooids from fig. 5.7 of Ramsay & Huber (1983). 
~'Using an object-pair selection factor of 1.05. 
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l inea r  o r  l e a s t - s q u a r e - r o o t  best-f i t  a lgo r i thm w o u l d  les- 
sen the  inf luence  of  spu r ious  and  dis ta l  va lues  o f  e l l ip-  
t ici ty.  H o w e v e r ,  the  l eas t - squa res  M O E  m e t h o d  does  A P P E N D I X  

p r ov ide  a g o o d  tool  for  fabr ic  m a p p i n g  because  o f  its 
high p rec i s ion  in smal l  d a t a  subsets .  L E A S T - S Q U A R E S  A L G O R I T H M  F O R  A 

C E N T E R E D  E L L I P S E  
T h e  c o m b i n a t i o n  o f  a u t o m a t e d ,  best-f i t  e l l ipse  de te r -  

ru ina t ion  with  quan t i t a t ive  m e t h o d s  of  fabr ic  analys is  A general equation for conics, including ellipses, can be written as: 

promises to provide new tools  for a wide range of A x  2 + Bxy + Cy 2 + Dx + Ey + F =  0. (A1) 

scientific investigations. The current concentration on If (B 2 - 4AC) -< 0, the equation (A1) describes an ellipse (Thomas 
s t ra in  analysis should be replaced with more generalized 1967). If the elliptical pattern is centered on the origin, equation (A1) 
studies of fabric anisotropy, can be simplified to that of a centered conic: 

Ax 2+Bxy+Cy 2 -  1=0.  (A2) 
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For an observed set of points (x,,yi), the sum of the squares of the 
deviations of the points from the best-fit ellipse can be minimized by 
minimizing the sum of the squares of the residual ki (equation A4): 
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These simplify to (A6): and solve equations (A6) 

= (cef+ cdg + bdh - c2h - d2f - beg) 
A *  ~ (x~) + B* Z (x~iyi) + C* Z (x~iy~i) = Z (x~i) m 

(ace + 2bcd c ~ ad 2 bZe) 

A * ~ ( ~ r i ) + B * Z ( ~ y 2 ) + C * Z ( x . o P i ) = ~ ( x i Y i )  (A6) B =  ( a e g + b c h + c d f - c 2 g - a d h - b e ' t )  (AS) 
(ace + 2bcd - c s - ad z - b2e) 

(ach + bdf + cbg b2h adg) 
A* ~ ( ~ )  + B* Z (x/y3) + C* ~ (y~') = ~ (.v/2). C = (ace + 2bcd - ~ - ad z - bZe) " 

Let The resulting A, B and C are the coefficients of the least-squares 
best-fit ellipse. The ellipticity and inclination of the long axis can be 

a = ~ (x)), b = Z (~Yi), c = Z ( ~ ) '  solved using analytical geometry (Thomas 1967). 

d= Z (x/y~), e= Z (y~)' f= Z (~) '  (A7) 


